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Background: Infusate of the whole plant of Physalis angulata is used traditionally for the remedy of various diseases 
including diabetes and gout. This study focused on the stem of P. angulata. The objectives of this study were to investigate 
the potential of the stem infusate (INPA) and ethanol extract (EEPA) of P. angulata as inhibitors of α-glucosidase and 
xanthine oxidase.
Materials and Methods: INPA and EEPA were determined for their α-glucosidase and xanthine oxidase inhibition activities 
in vitro, whereas antioxidant activity was determined by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay. Reference 
inhibitors were used for comparison. The total phenolic compounds were also estimated.    
Results: EEPA had more concentrated phenolic than INPA which were 7.96 and 0.08 mgGAE/g dried biomass, respectively. 
INPA and EEPA inhibited α-glucosidase considerably, with IC50 of 149.11 and 409.86 µg/mL, respectively (acarbose was 
130.66 µg/mL). However, they inhibited xanthine oxidase weakly, with IC50 of 0.546 and 2.643 mg/mL, respectively, 
compared with allopurinol 0.005 mg/mL. EEPA scavenged DPPH radicals very weakly (16.04 mg/mL) compared to BHT 
(0.021 mg/mL), whereas no activity was observed for INPA.  
Conclusion: The stem infusate and ethanol extract of P. angulata are able to inhibit the activity of α-glucosidase, thus can 
be further explored for sources of bioactive compounds with α-glucosidase inhibition activity.
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Introduction

Physalis angulata, (local name: ciplukan, nyoyoran, or 
cecendet) is a flowering plant of the family Solanaceae. It 
grows in the regions of South America and South East Asia.  
P. angulata is a shrub tree that can grow up to one meter. It has 

yellowish bell-shaped flowers, and its fruits were covered in 
a lantern-shaped leaves. P. angulata is known for its various 
health benefits. Traditionally, infusate of P. angulata was 
reported to cure various diseases, such as asthma, malaria, 
hepatitis, and diabetes mellitus.1 Pharmacological studies 
have been carried out to scientifically confirm the medicinal 
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properties of P. angulata. Extracts of the aerial parts were 
reported for their antioxidant2,3, antimicrobial4, antitumor5, 
and  anti-inflammatory activities6-8.
	 Type 2 Diabetes mellitus (T2DM) is one of the global 
epidemics and is projected to affect 700 million by 2030.9 

T2DM is a chronic metabolic disease characterized by high 
level of post prandial blood glucose. This can be caused 
by insulin resistance or impaired pancreatic β-cells or a 
combination of both. Therapeutic strategy in controlling 
post-prandial blood glucose level includes inhibition 
against enzymes responsible for the degradation of dietary 
polysaccharides into glucose in the intestine. Thus, 
α-glucosidase is targeted in the management of T2DM. 
	 Cohort studies have demonstrated that hyperuricemia 
could increase the risk for developing T2DM.10 

Hyperuricemia, a condition of high level of serum urate, 
may lead to gouty arthritis which is caused by the deposition 
of sodium urate in the joints. Xanthine oxidase is an enzyme 
involved in the oxidation of hypoxanthine to xanthine and 
from xanthine to uric acid. Inhibition on xanthine oxidase is 
the main therapeutic target in controlling serum urate.
	 As a home remedy, the whole plant of P. angulata 
is usually decocted or infused. However, the efficacy of 
the stem of P. angulata so far is not yet reported. Besides, 
studies are still few with regard to the antidiabetic and anti-
hyperuricemia of the stem infusate of P. angulata. The 
present study describes the enzymes (α-glucosidase and 
xanthine oxidase) inhibitory and antioxidant activities of the 
stem extracts (infusate and ethanol extract) of P. angulata. 

Materials and methods

Chemicals
Reagents used were of the highest purity, as follows: 
α-glucosidase from Saccharomyces cerevisiae, xanthine 
oxidase from bovine milk, 1,1-diphenyl-2-picrylhydrazyl 
(DPPH) radicals, p-nitrophenyl α-D-glucopyranoside, 
xanthine, acarbose, and allopurinol were obtained from 
Sigma-Aldrich (St Loius, USA). Solvents used were of 
analytical grade.  

Sample Collection and Extract Preparation
P. angulata stems were collected from natural resources in 
Tangerang area (West Java) in May 2018. Stems were air-
dried and pulverized and kept at 4oC until used. Infusate 
of P. angulata stem (INPA) was prepared by decocting the 
stem powder (5 g) in water (150 mL) at 90oC for 30 minutes. 

Infusate was obtained by filtering the decoction, and the 
filtrate was freeze-dried to obtain solid material. 
	 Ethanol extract of P. angulata (EEPA) was prepared 
by maceration of the stem powder (30.60 g) in ethanol for 
72 h. The mixture was filtered through filter paper, and the 
filtrate was dried under reduced pressure using a rotary 
evaporator. 
	 Stock solutions of INPA and EEPA were prepared by 
dissolving each dried filtrate in DMSO.

Determination of Total Phenolic Content (TPC)
INPA and EEPA were determined for their phenolic 
contents based on the Folin-Ciocalteu method as reported 
previously.11 In brief, sample (0.5 mL) was mixed with 
Folin-Ciocalteu reagent (10% v/v, 2.5 mL), and left to stand 
for 10 mins. The mixture was then added with Na2CO3 (75 
g/L, 2.5 mL) and incubated at room temperature for 2 h. The 
absorbance was measured at 765 nm. TPC was estimated 
using a gallic acid calibration curve (12.5–200 µg/mL) 
and results were presented as mg gallic acid equivalent 
(mgGAE)/g dried biomass. 

Determination of α-glucosidase Inhibition Activity
α-Glucosidase inhibition activity of INPA and EEPA was 
determined based on a reported method.11 In this method, 
p-nitrophenyl glucopyranoside (pNPG) was used as a 
substrate and acarbose was used as a reference inhibitor. 
Sample of different concentrations (50 µL) was mixed with 
α-glucosidase (0.5 U/mL, 50 µL) and phosphate buffer 
(50 mM pH 6.8, 50 µL). The mixture was pre incubated 
for 5 minutes at 37oC, thereafter pNPG (1 mM, 100 µL) 
was added. The reaction mixture was further incubated for 
20 minutes at 37oC. The reaction was interrupted by the 
addition of Na2CO3 (100 mM, 750 µL) and the absorbance 
was measured on a spectrophotometer at 405 nm. Inhibition 
percentage was calculated by the following equation: (A – 
B)/A x 100%, where A is absorbance of control and B is 
absorbance of sample. Inhibition activity was presented as 
IC50 value, calculated from a linier regression equation of 
inhibition % vs. sample concentration.
 
Determination of Xanthine Oxidase Inhibition Activity
Determination of xanthine oxidase inhibition activity was 
conducted following a reported method.12 Xanthine was 
used as a substrate and allopurinol was used as a reference 
inhibitor. Sample of different concentrations (100 µL) 
was mixed with xanthine oxidase (0.2 U/mL, 100 µL) and 
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phosphate buffer (50 mM pH 7.4, 400 µL). The mixture was 
pre incubated for 5 minutes at 37oC. Xanthine (0.3 mM, 200 
µL) was added to start the reaction and the reaction mixture 
was further incubated for 30 mins at 37oC. HCl (0.1 M, 200 
µL) was added to stop the reaction and the absorbance was 
read at 290 nm. Inhibition % was calculated as follows: (A 
– B)/A x 100%, where A is absorbance of control and B is 
absorbance of sample. Xanthine oxidase inhibition activity 
was presented as IC50 value which was calculated based on a 
regression equation (inhibition % vs. concentration).
 
Determination of DPPH Radical Scavenging Activity
Determination of DPPH radical scavenging activity was 
conducted according to a previous method.13 DPPH solution 
in ethanol (0.6 mM, 3 mL) was mixed with samples of 
different concentrations (1 mL in ethanol). The reaction 
mixture was incubated in the dark at room temperature for 
30 mins, thereafter the absorbance was measured at 517 nm. 
The scavenging % was calculated by the following equation: 
(A – B)/A x 100%, where A is absorbance of control and B 
is absorbance of sample. DPPH radical scavenging activity 
was presented as IC50, calculated from a regression equation 
of scavenging % plotted against sample concentrations. 

Statistical Analysis
All experiments were conducted in three repetitions. Data 
were presented as mean±SD. Significance difference 
between samples were analysed using one-way ANOVA 

(analyzed by an SPSS v 23 (IBM Corporation, Armonk, NY, 
USA)) followed by a Post Hoc test (Tukey test). Values of 
p<0.05 were treated as significant.  

Results

TPC
The TPC of INPA and EEPA were estimated by a 
spectrophotometric method, based on the complex formation 
of Prussian blue complex of [(PMoW11O4)

4−] with phenolic 
compounds in the extracts.14 Linear regression of gallic acid 
standard curve obtained a good correlation coefficient with 
R2 = 0.998 (y = 0.008x + 0.034). 
	 EEPA was found to have higher content of phenolic 
(7.96±0.02 mgGAE/g dried biomass) compared to INPA 
(0.08±0.00 mgGAE/g dried biomass).

α-Glucosidase Inhibition Activity
Both INPA and EEPA inhibited α-glucosidase in a 
concentration-dependent manner. Inhibition activity (% 
inhibition) increased with increasing extract concentration, 
Tabel 1. However, INPA exhibited strong inhibition on 
α-glucosidase, comparable to that of the positive control 
acarbose. EEPA showed weaker activity compared to both 
INPA and acarbose (p<0.05).

Xanthine Oxidase Inhibition Activity
Both INPA and EEPA were able to inhibit xanthine oxidase. 
Increased concentrations of extracts increased xanthine 

Table 1. α-Glucosidase inhibition activity of P. angulata stem extracts. 

Samples Concentrations
(µg/mL)

Inhibition
(%)

IC50

(µg/mL)
INPA 90 9.28±5.80 149.11±7.46

135 33.41±5.91
146 40.71±0.74
158 58.21±2.87
180 84.49±3.34

EEPA 305.48 7.72±3.52 409.86±2.51
374.46 13.57±2.27
443.44 84.36±11.21
522.27 97.38±0.55

Acarbose 13 7.64±2.66 130.66±5.94
26 19.54±3.00
52 30.18±2.77
208 66.66±1.44
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Table 2. Xanthine oxidase inhibition activity of P. angulata stem extracts. 

oxidase inhibition activity in a concentration-dependent 
manner, INPA showed higher inhibition activity than 
EEPA, yielding nearly five times higher activity for INPA 
than EEPA (p<0.05) (Table 2). However, the activity of 
both extracts was much lower than allopurinol, the positive 
control.

DPPH Radical Scavenging Activity
DPPH assay was a versatile screening method in 
investigating the antioxidant activity of plant extracts. This 
antioxidant method is based on the scavenging activity of 
the extracts, probably by donation of hydrogen atom of the 
antioxidant compounds in the extracts to DPPH radicals. 
Increased INPA concentration (0.065 to 0.260 mg/mL) did 
not change inhibition percentage significantly, indicating a 
very weak activity. The IC50 could not be determined. For 
EEPA, percentage of inhibition increased as a function 
of concentration. However, EEPA showed very weak 
scavenging activity as seen in the obtained IC50, compared 
to the positive control BHT (Table 3). BHT is a synthetic 
antioxidant and used as a food additive. 

Discussion

Plant secondary metabolites, in particular polyphenolic 
compounds have been associated with the pharmacological 
activities of plant extracts, including antidiabetic15, anti-
hyperuricemia16, and antioxidant17 activities. 
	 Polarity of the solvent extractant is likely a decisive 
factor in the extraction of phenolic compounds in the plant 

parts.18 Findings in this study indicate that ethanol is more 
efficient than water in extracting phenolic compounds from 
the stem of P. acutangula. It is likely that heterogenous polar 
moieties attached to the phenolic derivatives of the stem of 
P. acutangula influence the solubility of the compounds in 
different solvents.
	 Inhibition on α-glucosidase is one of important 
therapeutic strategies for the management of T2DM. 
Acarbose, the synthetic α-glucosidase inhibitor, suffers from 
adverse side effects including gastrointestinal discomfort 
that may interfere its clinical use.19 Plants are potential 
source of natural α-glucosidase inhibitor. For this purpose, 
P. angulata was investigated for its inhibition activity on 
α-glucosidase. A number of studies have reported marked 
inhibition activity on α-glucosidase by water20 and polar 
solvent extracts (methanol and ethanol extracts)21. 
	 The current study exhibited that both INPA and EEPA 
were able to inhibit α-glucosidase with comparable activity 
to acarbose, the reference standard. Antidiabetic activity 
of P. angulata has been studied previously using animal 
models, such as using whole plant, fruit, and leaves.22-24 The 
current study added to the literature in which stem extracts 
were studied. It was revealed that α-glucosidase inhibition 
activity of INPA and EEPA did not correlate with the 
phenolic contents of the stem extracts. These results suggest 
that the inhibition activity might also be attributed to the 
presence of non-phenolic compounds such as alkaloid and 
terpenoid, as also observed by others.25,26 

	 Gout is a globally distributed disease with increasing 
prevalence. Hyperuricemia is the major risk factor for gout 

Samples Concentrations
(µg/mL)

Inhibition
(%)

IC50

(µg/mL)
INPA 0.200 24.37±4.31 0.546±0.03

0.500 47.77±11.19
0.624 63.20±8.43

EEPA 0.023 15.53±3.52 2.643±0.28
0.375 47.82±2.23
6.757 80.81±3.25

Allopurinol 0.003 8.24±4.87 0.005±0.00
0.004 36.71±5.93
0.005 57.24±6.39
0.007 64.59±8.00
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Table 3. DPPH radical scavenging activity of P. angulata stem extracts. 

arthritis. Evidence from cohort study suggest association of 
hyperuricemia and diabetes mellitus.27 Currently, allopurinol 
is the first line drug prescribed to lower serum urate level 
by the inhibition on xanthine oxidase. However, its use was 
reportedly caused hypersensitivity reactions.28 The current 
study showed that INPA and EEPA were able to inhibit 
xanthine oxidase, although significantly more weakly than 
allopurinol. Similarly to α-glucosidase inhibition activity, 
the observed inhibition activity on xanthine oxidase did not 
relate to the phenolic content in the extracts. This indicates 
the presence of non-phenolic based inhibitors. To the best 
of our knowledge, the current study is the first report on 
xanthine oxidase inhibition activity of P. angulata stem 
extracts. 
	 Oxidative stress is generally defined as an imbalanced 
formation and removal of reactive oxygen species (ROS). 
ROS are capable of damaging various biomolecules, 
including protein, lipid, and DNA. Oxidative stress has 
been associated with the onset and progression of DM. 
Further, xanthine oxidase has been reported to increase 
during oxidative stress.29 Therefore, antioxidant is required 
to reduce the oxidative damage. INPA showed no radical 
scavenging activity, whereas EEPA had negligible activity. 
	 The enzyme inhibition and radical scavenging 
activities observed in this study were weaker than those of 
standard compounds. This could be due to the crude extracts 
used in this study. The current study recommends for future 
studies to be directed on the use of successive extractions 
with solvents of varying polarity and the isolation of the 
bioactive compounds. 

Conclusion

The study found that the ethanol extract of P. angulata 
(EEPA) had higher content of phenolic compounds than 
water extract (INPA). INPA and EEPA showed good 
inhibition activity on α-glucosidase, with INPA exhibited 
higher activity than EEPA, comparable to that of acarbose. 
Both INPA and EEPA were weak inhibitors of xanthine 
oxidase compared to allopurinol. INPA and EEPA were 
found to be weak antioxidants. 
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