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Glioblastoma multiforme (GBM), a highly aggressive and malignant form of brain cancer, continues to pose a significant 
challenge in the field of oncology. Despite ongoing advancements in treatment strategies, the prognosis for GBM patients 
remains grim, with a 5-year survival rate hovering around 5%. The management of GBM involves multiple therapeutic 
approaches, including immunotherapy, but optimal treatment outcomes in terms of overcoming tumor recurrence and 
resistance have not been achieved. A key factor contributing to therapy resistance and the progression of GBM is the 
tumor's ability to evade the immune system, referred to as immune escape from cancer. This phenomenon reflects the 
tumor cells' efforts to adapt and survive the body's immune response. The release and expression of molecules like TGF-ß, 
IL-10, PD-L1, and NKG2DL by GBM cells impact the activation, recognition, and elimination of tumor cells by the immune 
system. Additionally, the involvement of cells such as MDSCs, Tregs, and TAMs plays a role in inhibiting the immune system's 
function, thereby promoting the development of GBM cells. A better comprehension of GBM's immune escape, supported 
by technological advances, will significantly aid in the future management of GBM patients' treatment.
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Introduction

Glioblastoma multiforme (GBM) is classified as a grade 
4 cancer by the World Health Organization (WHO), 
representing the most lethal form of primary brain tumor 
with the highest prevalence, accounting for 45% of 
malignant brain tumors. The  majority  of  GBM  patients  
typically  fall  within  the  age  range  of  45  to  75  

years.  Regrettably,  the  prognosis  for  individuals  with  
glioblastoma  is  quite  bleak,  with  a  5-year  survival  rate  
of  less  than  5%.1 The  incidence  of  GBM  varies  from  
0.59  to  5  cases  per  100,000  individuals  each  year,  and  
there  is  a  projected  annual  increase  in  the  number  of  
GBM  cases  worldwide.2,3

	 Histologically, GBMs exhibit clusters of poor 
differentiated, pleomorphic astrocytes with a significant 
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vascularization.4 Typically, GBM tumors originate from 
neural stem cells that can develop into astrocytic or neuronal 
cell types.5

	 The standard treatment for GBM tumors entails 
surgical resection along with radiotherapy and chemotherapy 
using temozolomide (TMZ).6 Additionally, steroids like 
dexamethasone are administered to reduce inflammation 
caused by peritumoral edema.7 However, conventional GBM 
treatment is not entirely effective because it can impact the 
body's anti-tumor immune response. The combined use of 
high-dose TMZ chemotherapy and radiotherapy is known 
to induce lymphopenia.8 Simultaneous administration of 
TMZ, radiotherapy, and dexamethasone in patients can lead 
to a persistent decrease in CD4+ T lymphocytes, increasing 
the risk of infection and worsening survival rates.9

	 Advancements in science and technology have led to 
continuous improvements in cancer treatment. For instance, 
the utilization of 5-aminolevulinic acid (5-ALA) aims to 
enhance the imaging of GBM cells during surgery, making 
tumor removal more effective.10 Immunotherapeutic 
strategies, such as immune checkpoint inhibitors, cell-based 
therapies, and vaccines, are also under development to 
stimulate the body's immune response against cancer cells.11 

Nevertheless, current immunotherapy approaches for GBM 
still fall short of delivering ideal treatment outcomes. The 
highly invasive nature of GBM tumors, combined with 
the immunosuppressive tumor microenvironment (TME) 
of GBM, often hinders the activation of the anti-cancer 
immune system, leading to tumor recurrence and therapy 
resistance.12

The involvement of the immune system in 
tumor surveillance

The human body's immune system possesses a sophisticated 
network of cells and molecules that collaborate to detect 
and eliminate foreign or aberrant cells, including cancerous 
ones. Key components include immune cells like antigen-
presenting cells (APCs), B and T lymphocytes, and natural 
killer (NK) cells, which cooperate to identify and target 
malignant cells, ensuring the body's tumor surveillance 
system functions effectively (Figure 1).
	 Tumor cells release antigens, which are identified and 
recognized by APC cells. These APCs become activated 
in order to process and present these tumor antigens to T 
lymphocytes within the primary lymphoid tissue. This 
activation induces T cells to infiltrate the tumor region via 
the bloodstream. Activated T cells, in turn, release immune 

signaling molecules like cytokines, which serve to activate 
and recruit other immune cells, including B lymphocytes, 
NK cells, and macrophages. Facilitated by their respective 
receptors, these immune cells recognize and eliminate 
tumor cells through various mechanisms, such as antibody-
dependent cellular cytotoxicity (ADCC) and the release 
of perforin and granzyme.13 When eradicated, tumor cells 
release further antigens, which bolster the immune response 
against the tumor and set in motion the subsequent cycle of 
anti-tumor immunity.14

Mechanisms of immune evasion in GBM

While the immune system diligently monitors and targets 
tumor cell growth, GBMs employ various strategies to avoid  
detection and elimination. These following mechanisms  
collectively create a microenvironment that hinders the 
effectiveness of anti-tumor immune responses (Figure 2).

Immunoprivileged Nature of the Brain
The brain possesses distinct immune characteristics, creating 
an immune-privileged environment that tightly controls the 
entry of immune cells and antibodies into brain tissue. The 
access of immune cells, particularly T cells, into the central 
nervous system is governed by endothelial cells. Specific 
molecules on the surface of these endothelial cells, such as 
selectins and integrin ligands, serve to capture circulating T 
cells.15 Following this, T cells become activated and migrate, 
leading to a downregulation of integrins and an increase in 
matrix metalloproteinases (MMPs) expression. This results 
in the degradation of the extracellular matrix, permitting 
other immune cells to enter the central nervous system.16 
Nevertheless, the overall passage of immune molecules 
and cells into the brain is significantly restricted due to the 
stringent control of the blood-brain barrier.
	 The blood-brain barrier (BBB) is a complex structure 
within the walls of cerebral blood vessels and has a 
crucial role in selectively regulating the entry of cells and 
substances from the bloodstream into the brain. A key 
component of the BBB is the brain's vascular endothelial 
cells, which are interconnected by tight junctions that 
govern the permeability of the endothelium. Additionally, 
numerous efflux transporters are present to eliminate 
foreign substances and waste products from the brain into 
the bloodstream. Apart from endothelial cells, the BBB is 
composed of pericytes and perivascular macrophages that 
inhabit the basal membrane of BBB, helping to regulate 
endothelial function and forming an additional cellular 
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barrier around the cerebral vasculature in collaboration with 
astrocyte cells.17,18

	 During the development of GBM tumors, the 
endothelial component of the BBB can be compromised. 
High metabolic activity of GBM cells can lead to hypoxic 
conditions and trigger the formation of new blood vessels 
through angiogenesis.19 This process damages the tight 
junctions between endothelial cells, resulting in the creation 
of new vasculature.20 The inflammatory conditions caused 
by GBM tumor growth can also weaken the tight junction 
connections in the endothelium.16 Despite the weakening 
of the BBB within the GBM tumor core, the environment 
surrounding distal GBM tumors still maintains a highly 
selective permeability. This presents a significant challenge 
for the immune system to reach tumor cells and limits the 
accessibility of chemotherapeutic agents and antibodies to 
target GBM tumors.21

Secretion of Immunosuppresive Molecules: Transforming 
Growth Factor (TGF)-β and Interleukin (IL)-10
GBM cells have the ability to establish an immune-
suppressing environment by releasing cytokines like TGF-β 

and IL-10, which can hinder the activation and functionality 
of immune cells. This secretion of soluble factors is often 
associated with the recruitment of regulatory T cells (Tregs) 
to the tumor site, further undermining the anti-tumor 
immune response.
	 TGF-β is a growth factor that can trigger various 
cellular responses when it binds to its receptor, including 
cellular signaling pathways like SMA and MAD gene 
family homolog (SMAD)2/3, partitioning-defective 6 
(PAR6), phosphatidylinositol-3-kinase (PI3K), rat sarcoma 
(RAS), and TGF-β-activated kinase 1 (TAK1)/TAK1-
binding proteins 1 (TAB1)/tumor necrosis factor receptor-
associated factor 6 (TRAF6). These pathways can lead to 
cell growth, differentiation, apoptosis, angiogenesis, and 
immune responses.22 Intriguingly,  TGF-β  plays  a  dual  
role  in  tumor  development.  It  initially  exerts  anti-
proliferative  effects  on  various  cell  types,  including  
tumor  cells.  In  the  early  stages  of  tumorigenesis,  TGF-β  
induces  apoptosis  in  tumor  cells  and  inhibits  the  cell  
cycle  by  suppressing  c-Myc  expression  and  inducing  
p21  expression.23-26  As  the  tumor  progresses,  TGF-β  
triggers  the  epithelial-to-mesenchymal  transition  (EMT)  

Figure 1. Anti-cancer immunity cycle. (The Figure was partly generated using Servier Medical Art provided by Servier, 
licensed under a Creative Commons Attribution 3.0 unported license (https://creativecommons.org/licenses/by/3.0/)).
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process,  which  is  crucial  for  cancer  motility,  invasion,  
and  metastasis.27

	 EMT involves altering the cellular structure and 
morphology from an epithelial to a mesenchymal state, 
either partially or completely transitioning into a full 
mesenchymal phenotype. In cases like cancer cells, 
intact EMT processes empower cells to migrate towards 
secondary tissues through blood vessels or lymphatic 
vessels. Various transcription factors, including zinc-finger 
E-box binding homeobox 1 and 2 (ZEB1, ZEB2), play roles 
in EMT and carcinogenesis.28 Particularly, ZEB1 regulates 
the E-cadherin molecule, crucial for epithelial integrity. 
Activation of ZEB1, as observed in EMT, suppresses 
E-cadherin transcription, impacting epithelial stability and 
facilitating tumor cell migration. A correlation between 
increased ZEB1 expression and decreased E-cadherin 
expression in patients with prostatic anomalies, a condition 
often caused by tumors or infection, was reported.29 

Additionally, TGF-β-induced EMT may enhance tumor 
stemness and invasiveness, potentially contributing to 
cancer resistance against chemotherapy.30 The sensitivity 
of cancer cells to therapy is influenced by punctuation 
factors, and genetic alterations in the GBM stem-like cell 

Figure 2. Immune evasion mechanisms of GBM. (The Figure was partly generated using Servier Medical Art provided by 
Servier, licensed under a Creative Commons Attribution 3.0 unported license (https://creativecommons.org/licenses/by/3.0/)).

(GSC)  population  lead  to  tumor  recurrence  and  drug  
resistance.31

	 IL-10 is essential for immune homeostasis and 
belongs to a group of anti-inflammatory cytokines that help 
regulate the immune response during inflammation or tissue 
injury.32 It prevents pathological conditions resulting from 
inflammation or autoimmunity.33 
	 As part of the immune response control, regulatory 
cells like Treg are activated and recruited, leading to the 
secretion of IL-10 and TGF-β. Both IL-10 and TGF-β have 
inhibitory effects on immune cells such as granulocytes, 
mast cells, dendritic cells, and T helper cells (Th1, Th2, 
and Th17). Additionally, the release of IL-10 and TGF-β 
enhances the production of immunoglobulin (Ig)A and 
IgG4 and the expression of FoxP3, thereby reinforcing the 
activation of Treg cells and maximizing the suppression of 
immune responses.34

	 In the microenvironment of their tiny tumors, GBM 
cells secrete numerous immune-suppressing factors, 
including IL-10 and TGF-β, to aid in evading the immune 
surveillance system. TGF-β, when released by GBM 
tumors, can reduce the expression of intercellular adhesion 
molecule (ICAM)-1 and vascular cell adhesion molecule 
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(VCAM)-1 on endothelial cells, impeding T cell infiltration 
into the tumor region.35 Furthermore, TGF-β can enhance 
the activity of matrix metalloproteinase (MMP)2 and 
MMP9, promoting the motility and invasion of GBM cells 
into the surrounding brain tissue.36 High messenger RNA 
(mRNA) expression of IL-10 in GBM tissue was reported 
in previous study.37 Treg cells that infiltrate the GBM 
microenvironment can also secrete IL-10, inducing immune 
tolerance from effector T cells.38 In vitro studies indicate that 
IL-10 secretion not only suppresses the immune system but 
can also increase the proliferation and migration of GBM 
cells.39 The immunosuppressive effects of soluble factors 
like IL-10 and TGF-β hold promise as potential biomarkers 
for GBM treatment, but further research is needed to explore 
their full impact.40

Programmed Cell Death Ligand 1 (PD-L1) Expression by 
GBM Tumor
	 Elevated levels of PD-L1 and programmed cell death 
protein 1 (PD-1) are commonly observed in cancer patients, 
particularly those with solid tumors, and are recognized for 
their role in modulating the immune response against cancer 
cells. There was an increase in PD-L1 mRNA expression in 
patients with nasopharyngeal carcinoma (NPC) compared 
to normal patients. Additionally, PD-1 expression in NPC 
patients was found to be correlated with the TNM (tumor-
node-metastasis) stage,  indicating  the  involvement  of  
PD-L1  and  PD-1  in  the  progression  and  development  of  
cancer.41

	 As   well   as   other   cancer   types,   GBM   tumor  
cells  can   also   elevate   the   presence   of   PD-L1   
immune   checkpoint   molecules   on   their   cell   surface  
with   its   function   as   immune   checkpoint   molecules.  
The   interaction   between   PD-L1   and   its   receptor,   PD-
1,   can   induce   exhaustion   in   immune   cells,  disrupting   
the   immune   response.
	 PD-1 or cluster of differentiation molecule (CD)279 
is a transmembrane protein expressed by various 
immune cells, including T and B lymphocytes, NK cells, 
macrophages, and dendritic cells. It plays a crucial role in 
regulating the immune response. During infections, immune 
cells that are unresponsive or ineffective against pathogens 
will display PD-1 on their cell membrane and subsequently 
become inactive due to interaction of PD-1 with its ligands. 
Additionally, PD-1 functions to eliminate immune cells 
that react to self-antigens through the process of immune 
tolerance.42

	 As one of the ligands of PD-1, PD-L1 or B7-H1 
molecules play a role in modulating the immune system. 
Generally, PD-L1 is found on the surface of macrophage 
cells, some T cells and B cells, dendritic cells, and some 
epithelial cells, particularly during inflammation.42 The 
binding of PD-L1 to PD-1 initiates cellular signaling that 
suppresses the activity of T cells. This binding leads to the 
phosphorylation of intracellular domains immunoreceptor 
tyrosine-based activation motif (ITIM) and immunoreceptor 
tyrosine-based switch motif (ITSM), recruiting SH2 
domain-containing tyrosine phosphatase 2 (SHP2). 
Activation of SHP2 and phosphatase and tensin homolog 
(PTEN) then inhibits PI3K and RAS signaling pathways, 
resulting in cellular responses like apoptosis, cell cycle 
inhibition, suppression of cytokine release, and inhibition 
of T cell proliferation and differentiation.43

	 The capacity of cancer cells to express PD-L1 
leads to the suppression of immune cell function, notably 
T cells. The expression and release of PD-L1 in the 
microenvironment of microtumors hinder T cell activity and 
facilitate their evasion from immune responses.44,45 Various 
signaling pathways, including Janus kinase (JAK), PI3K, 
mitogen-activated protein kinase (MAPK), hedgehog (HH), 
nuclear factor-kappa B (NF-κB), and wingless-type MMTV 
integration site family (WNT), contribute to the activation 
of PD-L1 and PD-1 during tumorigenesis. Furthermore, 
microRNA (miRNA), long non-coding RNA (lncRNA), 
and  cytokines  like  tumor  necrosis  factor  (TNF)-α   and  
interferon  (IFN)-γ  are  known  to  stimulate  PD-L1  and  
PD-1 signaling.46

	 GBM tumor cells are recognized for having 
high levels of PD-L1 expression. Reports indicate that 
approximately 88% of GBM patient samples express PD-
L1 molecules.47 Up to 61% of 94 GBM patients had tumor 
cells expressing PD-L1.47 Increased PD-L1 expression is 
associated with worse patient survival.48,49 As PD-L1 is 
considered a potential therapeutic target in GBM treatment, 
the combination of anti-PD-L1 antibodies and other immune 
checkpoint inhibitors is undergoing further evaluation in 
advanced studies.50

	 In addition to suppressing the activation and response 
of the anti-tumor immune system, PD-L1 is recognized 
for its role in controlling the EMT process, a phenomenon 
associated with the development of resistance to cancer 
chemotherapy. The regulatory impact of PD-L1 on EMT 
involves various molecular factors, including mucin 1 
(MUC1) and NF-κB. MUC1, adenosine deaminase that 
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acts on RNA 3 (ADAR3), and tryptophan hydroxylase 
1 (TPH1) can initiate the NF-κB signaling pathway by 
influencing upstream factors, subsequently promoting the 
progression of GBM cells and diminishing their sensitivity 
to TMZ.51 Previous in vivo and in vitro studies revealed that 
overexpression of PD-L1 not only impacts the malignancy 
of GBM but also triggers Erk-EMT signaling, potentially 
contributing to therapeutic resistance.52

Downregulation of Natural Killer Group 2 Member D 
Ligand (NKG2DL)
One strategy employed by GBM tumors to escape the 
immune system involves diminishing the recognition 
capability of NK cells. GBM cells can reduce the expression 
of ligands associated with one of the NK cell activator 
receptors, natural killer group 2 member D (NKG2D). This 
impairment in NK cell activation hampers their surveillance 
and elimination functions against tumor cells.
	 The NKG2D receptor is a surface protein found on 
immune cells, including NK cells. When NKG2D interacts 
with its ligand, NKG2DL, it triggers intracellular signaling 
that results in cellular responses like NK cell proliferation 
and activation. Activated NK cells eliminate target cells 
through cytotoxicity. In humans, NKG2DL types include 
MHC class I chain-related protein A/B (MICA/B) and 
UL16-binding protein (ULBP)1-6. Genetic polymorphism 
leads to variation in MICA/B and ULBP1-6 molecules, 
highlighting the immune system's ability to combat various 
pathogen variants.53

	 The expression of NKG2DL is regulated by various 
factors, ranging from transcription to post-translation 
levels.53 Stress, DNA damage, or infection can trigger 
cells to increase NKG2DL expression on their surface.54 

Immune cells with specific receptors for NKG2DL, like 
NK cells, recognize signals provided by target cells through 
NKG2DL expression. NKG2D receptors on NK cells bind 
to NKG2DL on target cells, initiating intracellular signaling 
pathways with the assistance of DNAX-activating protein 10 
(DAP10). The interaction between NKG2D and NKG2DL 
activates the vav guanine nucleotide exchange factor 
(VAV)-1, phospholipase C gamma 2 (PLCγ2), and c-Jun 
N-terminal kinase (JNK) signaling cascades, leading to NK 
cell cytotoxicity. Activation of PI3K signaling increases 
perforin and granzyme secretion by NK cells, while 
activation of JAK2 and signal transducer and activator of 
transcription 5 (STAT5) signaling induces cytokine release 
by NK cells.55

	 In an attempt to evade immune surveillance, tumor 
cells can reduce NKG2DL expression on their membrane 
surface through various mechanisms. They can increase 
the expression of miRNAs, such as miR-20a and miR-
93, which inhibit the translation of NKG2DL mRNA into 
protein. Furthermore, the expression of proteases by tumor 
cells, like a disintegrin and metalloproteinase domain-
containing (ADAM)10 and ADAM17, triggers proteolysis 
of NKG2DL, resulting in the shedding or degradation 
of NKG2DL from the tumor cell surface.53,56 Shedding 
leads to soluble NKG2DL (sNKG2DL), affecting NK cell 
response. Soluble NKG2DL can induce internalization and 
decreased expression of NKG2D on the NK cell surface.53,57 

Additionally, tumor cells can secrete NKG2DL into the 
surrounding microenvironment through exosomes, which 
can inhibit the recognition process of NK cells in the 
microtumor environment.58

	 Inducing expression of NKG2DL in GBM tumors 
through chemotherapy or radiotherapy is a potential avenue 
for future GBM immunotherapy research. A previous in 
vitro and in vivo study demonstrated that TMZ treatment 
and irradiation can increase gene expression of NKG2DL 
at mRNA and protein level, both in glioma cell lines and 
experimental animal models, as well as in GBM patient 
samples.59 Suppression of NKG2DL expression in GBM 
may be caused by the overexpression of EZH2-92aa protein, 
which promotes GSC evasion of NK cell recognition and 
cytotoxicity.60 Increased TGF-β expression has a repressive 
effect on NKG2DL expression in GBM patient samples, 
indicating a complex interplay of molecular and cellular 
factors in the microtumor environment that inhibits the 
anti-tumor immune response.61 The expression of miRNAs 
in GBM tumors can also impede the anti-tumor activity of 
NK cells via NKG2DL signaling. Inhibiting miR-20a, miR-
93, and miR-106b can enhance NKG2DL expression and 
bolster the susceptibility of GBM tumor cells to NK cells.62 

Nevertheless, there was also an involvement of miRNAs in 
enhancing the responsiveness of tumors to treatment. The 
presence of miR-93 was found to impede the autophagy 
process within the GSC population by inhibiting autophagy 
regulators, specifically beclin-1 (BECN1), autophagy-
related (ATG)5, ATG4B, and sequestosome (SQSTM)1/
p62. In the context of tumor development, such as in GBM, 
it is established that metabolites generated from autophagy 
are utilized by tumor cells to sustain their energy and 
nutrient requirements. Furthermore, the expression of miR-
93 was observed to heighten the sensitivity of GSCs to 
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radiation and TMZ administration.63 These study findings 
suggest a connection between the regulation of the immune 
system and GBM resistance through miRNAs. Future  
investigations  are  warranted  to  unravel  the  intricate 
interplay  between  these two  factors,  paving  the  way for  
more  effective  combinations  of  standard  therapy  and 
immunotherapy  in  patient  care. 

Immunosuppressive Effects of Immune Cells on the GBM 
Microenvironment
In addition to manipulating factors that create an immune-
suppressive environment, GBM tumor cells can also 
influence the behavior of immune cells recruited to the 
microtumor environment. This immunosuppressive 
microenvironment, partly due to the release of cytokines 
by tumor cells, can alter the anti-tumor activity of immune 
cells, causing them to adopt an immunosuppressive 
phenotype. The involvement of these immunosuppressive 
cells is a contributing factor to GBM tumor cells' evasion of 
the immune system.
	 One such group of immune cells exhibiting an 
immunosuppressive phenotype in the GBM microtumor 
environment is myeloid-derived suppressor cells (MDSCs). 
MDSCs are myeloid cells that function as regulators of the 
immune system.64 MDSCs can suppress T cell function 
through various mechanisms, including the production 
of arginase and the secretion of nitric oxide (NO) and 
reactive oxygen species (ROS).65,66 Research data indicates 
that MDSCs can inhibit the anti-tumor immune response. 
In patients with tumors, the accumulation of MDSCs is 
associated with the overproduction of cytokines and growth 
factors such as granulocyte macrophage-colony stimulating 
factor (GM-CSF), IL-2, and vascular endothelial growth 
factor (VEGF).67,68 The presence of MDSCs in the tumor 
surroundings can contribute to increased malignancy and 
resistance to cancer. MDSCs have the potential to support 
the processes of EMT, migration, and metastasis in NPC 
cancers, primarily mediated by cyclooxygenase (COX)-
2.69 In GBM tumors, the buildup of MDSCs leads to 
localized immunosuppressive effects.70 Monocytic MDSCs 
are more prevalent in GBM tumors than granulocytic 
ones.71 Monocytic MDSCs can release chemokines into 
the microtumor environment, recruiting regulatory T 
cells that assist in tumor growth.72 The expression of 
immunosuppressive molecules by MDSCs, such as TGF-β 
and arginase, further enhances the tumor's suppressive 
effect on the immune response.70

	 To promote their growth and evade the immune system, 
GBM tumor cells also exploit the immunosuppressive 
function of Tregs. Tregs belong to a subset of CD4+ T cells 
that differentiate in the thymus, a primary lymphoid organ. 
In pathological conditions like infections, Tregs are induced 
to control the immune response, including suppressing 
inflammation and preventing autoimmunity.73,74 Through the 
expression of cytotoxic T-lymphocyte-associated protein 
4 (CTLA-4) molecules, Tregs can interact with APC cells 
and inhibit the activation of effector T cells.75 Additionally, 
Tregs can suppress T lymphocytes and APC cells through 
several other mechanisms, including heme oxygenase-1 
(HO-1) expression, upregulation of IL-2, inhibition of 
IFN-γ, and stimulation of the release of immunosuppressive 
cytokines that amplify the suppressive effects of Tregs.76-79 
These mechanisms of suppression by Tregs may contribute 
to the inhibition of the immune response in GBM tumors. 
Studies in GBM patients have shown an increase of Tregs in 
peripheral blood and among lymphocytes infiltrating tumor 
tissue compared to normal brain tissue.80 The lymphocytes 
infiltrating GBM tumors, including Tregs, can reduce the 
expression of CD28 and CD62L molecules, which serve as 
immune cell co-stimulators, resulting in impaired activation 
of immune cells and a correlation with tumor progression.81 

Studies on brain tumor patient samples have indicated a 
positive correlation between Tregs infiltration and WHO 
tumor grade.82 Furthermore, it is known that hypoxic 
conditions in GBM tumors can stimulate the proliferation of 
Treg cells and induce the release of cytokines such as soluble 
colony stimulating factor-1 (sCSF-1), C-C motif ligand-2 
(CCL-2), and galectin-3, which play a role in promoting the 
growth, migration, and invasion of GBM tumor cells.83-86

	 In addition to T and B lymphocytes, macrophage 
cells have been reported to infiltrate GBM tumors as 
early as 1970.87 In high-grade astrocytoma tumors, a 
significant increase in the number of macrophage cells has 
been observed, although there is not a clear correlation 
between the number of lymphoid cells and tumor grade.88 
GBM tumors also contain cells with a macrophage-like 
phenotype, such as microglia cells exclusively located 
in brain tissue and malignant astrocyte cells. These cells, 
collectively referred to as tumor-associated macrophages 
(TAMs), infiltrate the tumor tissue due to their expression of 
similar surface markers, including ionized calcium-binding 
adapter molecule 1 (IBA1), CD11b, CD68, and human 
alveolar macrophage (HAM)56.89-91 Both TAMs and GBM 
cells can influence each other to support tumor progression. 
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GBM cells recruit TAMs through various mediators, 
including chemokines, complement receptor ligands, 
neurotransmitters, and adenosine triphosphate (ATP), leading 
to the accumulation of TAMs in tumor tissue.92 Additionally, 
GBM cells release molecular factors, such as S100 calcium-
binding protein B (S100B), arsenite-resistance protein 2 
(ARS2), and carbonic anhydrase IX (CAIX), that polarize 
TAMs into a pro-tumor M2 macrophage phenotype.93-95 On 
the contrary, M2 macrophages, also known as TAMs, have 
the ability to release cytokines like TGF-β, COX-2/STAT, 
epidermal growth factor receptor (EGFR)/extracellular 
signal-regulated kinase 1/2 (ERK1/2), SMAD/snail family 
transcriptional repressor 1 (SNAI1), protein kinase B 
(PKB)/mechanistic target of rapamycin (mTOR), C-C 
motif chemokine ligand (CCL)-18, and hypoxia-inducible 
factor (HIF)-1α. These cytokines play a role in fostering 
EMT and contributing to chemoresistance in GBM.96 

TAMs also contribute to GBM tumor growth and invasion 
by releasing cytokines like TGF-β, IL-6, IL-1ß, stress-
induced phosphoprotein 1 (STIP1), pleiotrophin (PTN), 
and epidermal growth factor (EGF), stimulating CCL, Toll-
like receptor (TLR), and WNT signaling pathways, and 
secreting exosomes. Furthermore, other molecules released 
by GBM cells, such as receptor for advanced glycation end 
products (RAGE), ADAM8, CECR histone acetyl-lysine 
reader protein 1 (CECR1), SUMO specific peptidase (SSP)-
1, and VEGF-A, may promote angiogenesis, supporting 
tumor progression.97

Implications for immunotherapy

The success of GBM therapy is significantly impacted by 
the presence of the BBB, which can hinder the delivery of 
therapeutic agents, including antibodies, to the tumor tissue. 
To address this challenge, various strategies have been 
developed to enhance the effective delivery of therapeutic 
agents across the BBB. These approaches encompass direct 
administration to brain parenchyma or cerebrospinal fluid, 
serving as routes to bypass the BBB and reach the GBM 
tumor environment. However, these methods, such as 
intraparenchymal, intracerebroventricular, or intrathecal 
injection, are highly invasive and associated with a high 
risk of infection. Furthermore, direct injection into brain 
parenchyma or cerebrospinal fluid is hampered by the slow 
diffusion rate within the dense brain tissue, resulting in 
ineffective drug distribution to the tumor.98-100

	 Another approach involves disrupting the barrier 
function of the BBB. Chemical disruption of the BBB, using 

hypertonic solutions and endogenous bioactive compounds 
like bradykinins, or physical methods using ultrasound 
techniques and microbubbles with increased specificity, is 
known to induce endothelial cell shrinkage and loosen tight 
junctions, facilitating the access of therapeutic molecules to 
the brain.101-104 However, the implications of BBB disruption 
are not yet fully understood and require further investigation 
before clinical application. Additionally, the development of 
drug delivery systems using carriers, such as vesicle-shaped 
nanoparticles, may aid in bypassing the BBB and reaching 
the brain parenchyma.105 These nanoparticles can be linked 
with molecular markers, like enhanced green fluorescent 
protein (EGFP)-epidermal growth factor 1 (EGF1) fusion 
proteins, which selectively recognize tumor-associated 
receptors, enhancing the targeting efficiency of therapeutic 
agents.106 Advances in science and technology have also 
led to the creation of modified therapeutic antibodies with 
improved BBB penetration capabilities, such as bispecific 
antibodies. These antibody molecules can simultaneously 
target antigens in the tumor environment and transporter 
components.107 While these approaches have not yet reached 
the clinical trial stage, pre-clinical trials in mice with 
intracranial tumors have demonstrated that anti-CTLA-4 
and anti-PD-1 antibodies, combined with poly (β-L-malic 
acid) biopolymers, effectively bypass the BBB barrier, 
leading to increased infiltration of CD4+ and CD8+ T cells 
into the tumor and improved mouse survival rates.108

	 An additional avenue for future GBM immunotherapy 
options involves targeting pro-tumorigenic cytokines like 
TGF-β. The administration of Trabedersen, an anti-sense 
RNA molecule complementary to TGF-β2 mRNA, to GBM 
patients with tumor recurrence may improve median survival 
compared to single chemotherapy treatment, though the 
difference is not yet statistically significant.109 Moreover, the 
administration of GVAX vaccine in combination with anti-
TGF-ß and anti-PD-1 antibodies has shown increased cure 
rates and improved anti-tumor effects in mouse models with 
pancreatic tumors. This combination therapy can reduce 
the infiltration of regulatory T cells into the tumor area,  
thus  mitigating  the  immunosuppressive  environment  in  
GBM.110

	 Targeting the PD-1/PD-L1 axis in the GBM microtumor 
environment is another viable treatment option for patients. 
Monoclonal antibodies classified as immune checkpoint 
inhibitors (ICIs), such as pembrolizumab, nivolumab, 
durvalumab, and atezolizumab, have demonstrated 
significant efficacy in clinical trials and have gained approval 
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for treating various types of cancer, including melanoma 
and lung cancer.111-113 In GBM, the effectiveness of anti-
PD-1/anti-PD-L1 antibodies is under investigation through 
pre-clinical studies and clinical trials. Single-agent ICI 
administration has not resulted in improved patient survival, 
but neoadjuvant ICI therapy shows promise in terms of anti-
tumor effects. This includes reducing immunosuppression 
in GBM tissue, enhancing local and systemic anti-tumor 
immune responses, and increasing immune cell infiltration 
into the tumor.114-116 In mouse models with GBM, combining 
anti-PD-1/anti-PD-L1 antibody therapy with standard 
TMZ therapy and radiotherapy has improved survival 
rates, boosted the number of circulating lymphocyte and 
tumor-infiltrating lymphocyte (TIL), and reduced local 
immunosuppression, indicating the therapeutic potential 
of ICI.117,118 Nevertheless, some clinical trials have not 
produced satisfactory results.115 Despite the challenges in 
the clinical trial phase, the potential anti-tumor effects of 
ICIs in GBM treatment warrant further exploration through 
additional studies.
	 Promoting anti-tumor immune responses via 
vaccination can serve as a supplementary element in the 
realm of immunotherapy for GBM. The use of a vaccine, 
Rindopepimut, which comprises an EGFR variant III 
(EGFRvIII) peptide conjugate, has been shown to enhance 
the overall survival rate in GBM patients with EGFRvIII-
positive tumors. Nevertheless, the administration of 
Rindopepimut may lead to tumor recurrence with a 
notable reduction in EGFRvIII expression compared to 
baseline. This suggests that targeting individual tumor 
antigens through vaccination could potentially give rise to 
tumor variants capable of evading the immune system.119 
In response to this concern, multi-peptide vaccines like 
IMA950 have been developed. Research findings indicate 
that IMA950 administration is well tolerated and can elicit 
specific adaptive immune responses against the target 
antigen, although the detection of specific T cells within 
the TIL population has not been confirmed. Consequently, 
the assessment and exploration of vaccine administration 
in combination with other modalities, such as immune 
checkpoint inhibitors, are ongoing through further clinical 
trials.120

	 Recent progress in engineering technology has 
contributed to the advancement of GBM immunotherapy 
through chimeric antigen receptor (CAR)-T cell. CAR-T 
cell therapy involves modifying donor T cells by combining 
tumor-specific fragments with costimulatory domains, 
which are then reintroduced into the autologous donor. This 

approach allows T cells to express an elevated number of 
tumor-specific receptors, enhancing their ability to target 
tumor cells and enabling activation without the need for 
external costimulatory signals.121 When CAR-T cell therapy 
is combined with standard GBM treatments such as TMZ 
and radiotherapy, a potential therapeutic effect is observed. 
Despite TMZ and radiotherapy causing lymphodepletion, 
this condition leads to the persistence of CAR-T cells in 
the blood circulation of GBM animal models, contributing 
to an increased survival rate in mice.122 CAR-T cells have 
the potential to restore and enhance the anti-tumor immune 
response of NK cells, which are suppressed due to the 
dysregulation of NKG2DL-NKG2D axis. In a GBM GL261 
mice model, combining radiotherapy with CAR-T cells 
expressing NKG2D demonstrated an effect in increasing the 
survival rate.123 Given the efficacy of CAR-T cell therapy in 
suppressing tumor growth in pre-clinical trials, it is essential 
to evaluate its application in patients before implementing it 
in clinical settings.

Conclusion

The formidable challenge in treating GBM patients stems 
from the invasive and unresponsive nature of GBM tumors, 
combined with the immune evasion mechanisms employed 
by tumor cells. The intricate interplay of molecular and 
cellular factors within the GBM microtumor environment, 
including TGF-β, IL-10, PD-L1, NKG2DL, MDSCs, 
Tregs, and TAMs, alongside the immune selectivity 
factor of the blood-brain barrier system, creates a highly 
immunosuppressive and treatment-resistant microtumor 
environment. Progress in immunotherapy, such as the 
administration of ICI, vaccination, and the application 
of CAR-T cell engineering techniques, is anticipated to 
break through the challenges posed by GBM resistance and 
recurrence. These advancements not only hold the promise 
of overcoming treatment hurdles but also aim to enhance 
the efficacy of standard treatments for GBM patients. Thus, 
ongoing research into the mechanisms of GBM evasion in 
the context of therapy is crucial for developing innovative 
therapeutic approaches that can revolutionize the treatment 
landscape for aggressive tumors like GBM.
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