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1’- Acetoxychavicol acetate Suppresses 
Osteosarcoma Cell Proliferation through the PI3K Pathway: 
A Molecular Docking and Cytotoxicity Study  
Putri Gita Ayu Safitri, Muhammad Da’i, Febri Wulandari

Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia

Background: This study aims to investigate anticancer properties of 1'-Acetoxychavicol acetate (ACA), a phenylpropanoid 
substance obtained from the rhizomes of the Alpinia genus, which has been extensively studied. However research on its 
cytotoxic effects, particularly against osteosarcoma cells, has never been donenot been conducted. The purpose of the 
research is to investigate the anticancer potential of ACA to support the its development as a novel therapeutic candidate.
Materials and methods: This study assessed ACA’s initial anticancer potential through in vitro cytotoxic tests on normal 
human osteoblast cells (hFOB) and osteosarcoma cells (MG-63) using the MTT assay. Additionally, bioinformatics analyses, 
including target prediction, gene ontology, hub gene identification, protein-protein interactions (PPI) network construction, 
Kyoto encyclopedia of genes and genomes (KEGG) pathways analysis, disease association analysis, and molecular docking, 
were performed. 
Results: The cytotoxicity test on normal hFOB showed an IC50 of 45.05 µM, while in MG-63 osteosarcoma cells, the IC50 was 
20.41 µM. In the bioinformatics test, top five target genes identified were SRC, GNAI1, PIK3CD, PIK3CB, PIK3R3. Molecular 
docking analysis showed that, the native PI3KD ligand showed a strong binding affinity of -10.99 kcal/mol and interacted 
with more amino acid residues.
Conclusion: Overall, ACA exhibits promise as a treatment option to inhibit osteosarcoma cell proliferation by targeting the 
PI3K pathway. To develop ACA as a potential osteosarcoma therapeutic candidate, extensive in vitro research is needed.   
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Introduction

Osteosarcoma, also knows as osteogenic sarcoma, is a 
malignant tumor that originates from mesenchymal tissue 
and is usually detected the metaphyseal region of children's 
long bones.1 It is characterized by abnormal bone growth 

with high malignancy, invasiveness, and rapid progression.1,2 

After lymphoma and brain tumors, osteosarcoma is the 
most prevalent cancer in teenagers. Its annual incidence in 
children under age of 15 is roughly 5.6 cases per million 
and its five-year fatality rate is 80%.1 While various 
therapies, including chemotherapy, have been developed to 
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treat osteosarcoma, these treatments often lack selectivity, 
targeting both tumor cells and normal tissues. This leads to 
acute and chronic damage.3 Chemotherapy resistance can 
also reduce the effectiveness of cancer treatment.4

	 The development of new, safe, and selective 
drugs remains crucial. One promising candidate is 
1'-Acetoxychavicol acetate (ACA), a phenylpropanoid 
substance obtained from the rhizomes of the Alpinia genus, 
commonly found in plants like ginger, galangal, and kencur.5 

ACA has been shown to have anticancer effects in several 
kinds of cancer cell line, including breast cancer, myeloma, 
Ehrlich's ascites tumor, prostate cancer, cervical cancer, and 
colorectal adenocarcinoma.6 ACA is known to have strong 
cytotoxic activity against breast cancer cells (MCF-7) with 
an IC50 value 23,9 µM.7 The ACA chemical reduces the 
growth of breast cancer cells by inducing apoptosis8, 
inhibiting cell proliferation, and suppressing cell migration9. 
A previous study has shown that IV administration of 
the ACA compound greatly lowers tumor volume while 
maintaining an excellent safety profile and causing no 
side effects.9 However, no research has explicitly analyzed 
ACA’s cytotoxic potential against osteosarcoma cells.
	 The purpose of this research was to investigate the 
anticancer potential of ACA using in vitro tests on normal 
hFOB and MG-63 osteosarcoma cells, using the MTT assay. 
Complementary bioinformatics analyses were conducted to 
identify target genes and pathways associated with ACA's 
effects on bone cancer. These findings are intended to 
support the development of ACA as a novel therapeutic 
candidate for osteosarcoma.
 
Materials and methods

Cytotoxic Test
hFOB and MG-63 cells were 80% confluence used trypsin- 
ethylenediaminetetraacetic acid (EDTA) solution 0.25% 
(Sigma-Aldrich, St. Louis, MO, US). The cells were then 
grown in 96-well plates until 80% confluence was attained. 
Various concentrations of ACA were added to the wells, 
then the cells were incubated overnight at 37°C  with 5% 
CO2. MTT reagent (Sigma-Aldrich, St. Louis, MO, US) and 
sodium dodecyl sulfate (SDS) solution (Sigma-Aldrich) 
were added to measure absorbance using an ELISA reader 
(Elx 800 BioTek, Winooski, VT, US). The IC50 value 
indicates the concentration needed to stop 50% of cell 
proliferation, was calculated through linear regression of 
concentration versus cell viability.10 

Data Collection and Processing  
Predictive target genes of ACA were identified using 7 online 
databases: Swiss Target Prediction, SEA search, Moltar 
PRed, Target Net, Binding DB, DINIES, and Hit Pick.11 The 
result were analyzed to obtain target genes. Mutated genes 
associated with bone cancer were retrieved from cBioPortal 
database (https://www.cbioportal.org/) and analyzed using 
Microsoft Excel. Venny 2.1.0 was used to determine 
intersection of predictive targets and bone cancer-associated 
mutated genes, identifying 69 overlapping genes.12

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) Pathway Analysis
DAVID v6.8 was used to analyzed GO for biological 
processes, molecular functions, and cellular components, 
with a p-value threshold of <0.05. Kyoto pathway 
enrichment analysis was performed using WebGestalt 
(http://www.webgestalt.org/), and bar charts were generated 
for visualization. An FDR-adjusted p-value of <0.05 was 
considered statistically significant.13 

Interactions Between Proteins of Hub Gene Contructs and 
Predictive Biomarkers
Protein-protein interaction (PPI) networks were constructed 
using search tool for the retrieval of interacting genes/
proteins database (STRING-DB) (https://string-db.org/) 
with a confidence score of >0.4. The parameters used 
included a maximum depth of 100, degree cutoff of 2, node 
score cutoff of 0.2, and k-score of 2.12

Molecular Docking
Protein structures for SRC (PDB ID: 3D7T), PIK3CD (PDB 
ID: 5T8F), and PI3K (PDB ID: 2RED) were obtained from 
the protein data bank (PDB: https://www.rscb.org/). The 
ACA ligand structure was retrieved from PubChem (https://
pubchem.ncbi.nlm.nih.gov/). Molecular docking simulation 
were performed using AutoDock v4.2. AutoDock was used 
for molecular docking, PyMOL and Discovery Studio 
Visualizer were used for molecular visualizations. The 
default parameters used in molecular docking included 
setting the X, Y, Z positions and grid box volume, with a 
number of points set to 20 and set to spacing 0.375 Å. The 
volume of the grid box used is 40×40×40 Å, with coordinate 
points at SRC (x: -64.635; y: 38.965; z: -41.545), PIK3CD 
(x: 37.873; y: 14.374; z: 33.957), and PI3K (x: -2.087; y: 
40.70, z: 2.592). An anaysis was conducted on binding 
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affinity and hydrogen bonds formed.14-16

Statistical Analysis
Result were presented as mean±standard deviation (SD). 
Data were performed in triplicates and analyzed using 
Mann-Whitney’s post hoc test, with a p-value of ≤ 0.05 
indicating a statistically significant difference.

Results

ACA Induced Concentration-Dependent Reduction in 
Viable Cell Count of Normal hFOB and Osteosarcoma 
MG-63 Cells 
The cytotoxicity of ACA was evaluated against normal 
hFOB cells and osteosarcoma MG-63 cells. The absorbance 
values used to calculate the IC50 value, which represents the 
concentration needed to inhibit 50% of cell proliferation. 
The IC50 value for normal hFOB cells was 45.05 µM, 
while for MG-63 cells it was 20.41 µM (Figure 1). The 
cytotoxicity test revealed that as the concentration of ACA 
increased, the percentage of viable cells in normal HFOB 
cells and MG-63 cells decreased. This demonstrates a dose-
dependent cytotoxic effect.17

ACA Enhanced Bone Cancer Treatment by Targeting 69 
Overlapping Genes

Figure 1. ACA induced concentration-dependent 
reduction in viable cell count of normal hFOB 
and Osteosarcoma MG-63 Cells. Viable cell count 
was measured after treatment with ACA at different 
concentrations for 24 hours. The results are presented as 
mean±SD (n=3). *Statistical significance (p<0.05) was 
determined using Mann-Whitney’s post hoc test when 
compared to the Sham group.

RSV Predictive target genes of ACA were identified using 
7 online databases, resulting in 9,353 potential target genes.  
Each target gene was represented by a mutations list. Venny 
2.1.0 was used to determine the potential target genes from 
ACA compound against osteosarcoma. These were cross-

Figure 2. The prediction of potential ACA target genes. The diagram illustrates the overlap between the predicted target 
genes of ACA and mutated genes associated with osteosarcoma, yielding 69 overlapping genes as potential targets.
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Term p-value Gene

GO:0007187~G protein-coupled receptor 
signaling pathway, coupled to cyclical 
nucleotide second messenger

1.19E+04 CHRM2, CHRM3, MC3R, HTR1E, HRH2, 
CHRM4, SSTR1, HTR4, SSTR4

GO:0006730~one-carbon metabolism 
process

1.25E+08 CA12, DHFR, CA1, CA5B, CA2, CA6

GO:0098664~G protein-coupled 
serotonin receptor signaling pathway

2.27E+09 CHRM2, CHRM3, HRH2, CHRM4, HTR4

GO:0007186~G protein-coupled receptor 
signaling pathway

1.70E+10 CHRM2, CHRM3, HTR1E, GPR35, 
PTGER2, CXCR4, ECE1, HTR4, SSTR4, 
PIK3CG, BRS3, P2RY1, PTGDR, TGM2

GO:0016310~phosphorylation 9.87E+09 HCK, SYK, ROCK1, PLAU, LCK, AKT2, 
ADK, FYN, JAK3, MET, PIK3CG, IGF1R

Molecular Function

GO:0016907~G protein-coupled 
acetylcholine receptor activity

2.54E+11 CHRM2, CHRM3, CHRM4

GO:0004089~carbonate dehydratase 
activity

3.24E+08 CA12, CA1, CA5B, CA2, CA6

GO:0005102~signaling receptor binding 3.14E+11 F7, HCK, SYK, LCK, REN, FYN, PLG, 
PLAT

GO:0019899~enzyme binding 3.29E+12 HDAC2, STAT1, CYP1A2, MDM2, FYN, 
PLG, SCN5A, CYP2C19

GO:0001784~phosphotyrosine residue 
binding

9.12E+11 HCK, SYK, LCK, FYN

Cellular Component

GO:0098685~Schaffer collateral - CA1 
synapse

2.95E+12 CDC42, ROCK1, FYN, PLG, PLAT

GO:0009986~cell surface 2.68E+12 VCAM1, ITGB5, PLAU, P2RY1, CD38, 
CXCR4, PLG, PLAT, SCN5A, MET

GO:0045202~synapse 2.29E+12 GABRB3, CHRM2, GABRA2, GABRA1, 
CHRM3, HTR1E, HRH2, CHRM4, HTR4

GO:0045211~postsynaptic membrane 4.91E+10 GABRB3, CHRM2, GABRA2, GABRA1, 
CHRM3, CHRM4, P2RY1

GO:0031234~extrinsic components of 
cytoplasmic side of plasma membrane

2.00E+10 HCK, LCK, FYN, JAK3

Biological Process

Table 1. Top five potential target genes of ACA compounds and their associated pathways.
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Figure 3. KEGG pathway analysis of ACA target genes. 
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database
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Predicted
Gen co-

Figure 4. The top five hub gen based on degree score 
were SRC, PIK3R3, PIK3CD, PIK3CB, and GNAI1. 
Edges in the figure represent protein-protein.

referenced with mutated genes in bone cancer, yielding 69 
overlapping genes as potential targets (Figure 2).
ACA Target Genes Enhanced Osteosarcoma Treatment by 
Regulating Critical Pathways
GO categorized 69 potential target genes into 3 categories: 
biological processes, cellular component, and molecular 
functions. The top pathways included G protein-coupled 
receptor signaling, one-carbon metabolic processes, and 
phosphorylation (Table 1). KEGG pathways analysis 
indicated  these genes are involved in multiple cancer-related 
pathways (Figure 3). Specifically, the GO analysis revealed 
that ACA target genes regulate biological processes through 
mechanisms such as one-carbon metabolic processes and G 
protein-coupled receptor signaling pathways. These genes 
are also located in cellular components like phosphotyrosine 
residue binding sites and are involved in molecular 

functions related to the cell surface and synapses. These 
finding suggest that ACA may exert its anticancer effects by 
modulating multiple key pathways and cellular processes. 
ACA Target Genes Enhance Protein-Protein Interactions 
and Play Critical Roles in Human Biology
Sixty-nine target genes were subjected to protein-protein 
interaction analysis using STRING-DB. The highest five 
hub genes based on degree score, were SRC, GNAI1, 
PIK3CD, PIK3CB, and PIK3R3. The edges represent 
protein interactions derived from curated databases, most 
of which are from experimentally determinated and gene 
eco-occurence (Figure 4). This associations suggest that the 
proteins work together to contribute to a common function, 
but do not imply that they are physically binding another. 
Based on their known functions, these five hub genes play 
critical roles in human biology (Table 2).

Gene Expression of PIK3CD and PIK3R3 Enhanced 
Prognostic Outcomes in Osteosarcoma
Gene expression analysis using GEPIA indicated that 
PIK3CD and PIK3R3 were highly expressed in osteosarcoma 
tissues compared to normal tissues (Figure 5). Prognostic 
analysis further demonstrated a strong correlation between 
elevated PIK3R3 expression and improved survival rates in 
osteosarcoma patients (Figure 6).

Molecular Docking
Molecular docking simulations showed that ACA interacted 
effectively with the target proteins SRC, PIK3CD, and PI3K, 
with binding affinity approaching that of the native ligand. 
This indicates strong and stable ligand-receptor interactions. 
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Protein Role Function Ref.

SRC

Non-
receptor 
tyrosine 
kinase

Migration, 
transformation, 
apoptosis, cell 
adhesion, and cell 
cycle progression

18,19

GNAI1
G-protein 
subunit

Transducer in 
several signaling 
cascades 
downstream of G 
protein-coupled 
receptors (GPCRs) 

20–22

PIK3CD
PI3K 
regulatory 
subunit

Development and 
immune cells activity, 
cell survival and 
proliferation

20,23,24

PIK3CB
PI3K 
regulatory 
subunit

Act downstream 
receptor tyrosine 
kinases

25–27

PIK3R3
PI3K 
regulatory 
subunit

Stimulated protein 
tyrosine kinases, 
controls kinase 
activity via SH2 
domain

28

Table 2. Role and functions of ACA- correlated genes.

Ref: References.

SRC PIK3R3 PIK3CD PIK3CB GNAI1
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Figure 5. Gene expression analysis of SRC, PIK3R3, PIK3CD, PIK3CB, and GNAI1.

Native The native ligand of PIK3CD has a higher binding 
affinity than the ACA molecule, which is consistent withthis 

accordance with of the amino acid residues in the native 
ligand of PIK3CD, which containing 6 hidrogen bonds and 
five non-hydrogen bonds, further confirms this (Table 3).
	 Based on connections between amino acid residues, 
the native ligand of PIK3CD has more interactions than 
ACA’s compounds. Non-hydrogen residues (Tyr 813, Ile 
825, Met 900) and hydrogen residues (Asp 911; Val 828) 
bind with ACA compound. According to the reference, key 
amino acids in PIK3CD receptor (PDB ID: 5T8F) include 
Tyr813, Glu 472, dan Leu 474.29 This indicates that ACA 
compounds and the native ligands of PIK3CD bind at the 
same site and are expected to exhbit similar affinity in 
inhibiting PIK3CD activity.
	 In drug discovery, good permeability and solubility 
are crucial. Lipinski’s Rule of Five is a widely used guidline 
to assess drug-likeness based on these properties. ACA 
satisfies all five of Lipinski’s Rule criteria, suggesting 
that it has favorable pharmacokinetic properties for oral 
bioavailability (Table 4).

Discussion

The cytotoxic test was performed using the MTT assay, 
which evaluates cell viability by measuring the reduction 
of tetrazolium salt by the mitochondrial enzyme succinate 
reductase. Increasing ACA concentration led to a decrease 
in the percentage of viable cells in both hFOB and MG-63 
cells, demonstrating a dose-dependent effect. The American 
National Cancer Institute (NCI) categorizes compounds 
with an IC50 value < 30 µg/mL as active. Therefore, ACA is 
classified as a strongly cytotoxic agent against MG-63 cells 
(IC50: 20.41 µM) and moderately cytotoxic against hFOB 
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cells (IC50: 45.05 µM). These results suggest that ACA may 
selectively inhibit cancer cells while exerting less impact on 
normal cells. These findings align with previous research 
demonstrating ACA’s anticancer activity in various cancer 
cell lines, such as breast, prostate, and lung cancer cells.
	 Previous research indicates that ACA exhibits 
anticancer activity in several cell types, including breast 
cancer cells. Specifically, ACA has been reported to have 
active cytotoxic activity against MCF-7 breast cancer 
cells, with an IC50 value of 23.9 µM.7 Similarly, a previous 
study10 reported that ACA from Pasar Legi Surakarta 
galangal extract exhibited active cytotoxic activity against 
T47D, HeLa, and MCF-7 cancer cells, with IC50 values of 
12.50 µg/ml, 13.20 µg/ml, and 15.80 µg/ml, respectively. 
Additionally, another study30 demonstrated that ACA 
exhibits an active cytotoxic effect on MDA-MB 231 breast 
cancer cells, with an IC50 value of 4.8 µM. In addition to 
breast cancer cells, ACA compounds have been shown to 
exhibit cytotoxic effect againts lung and prostate cancer 
cells. According to a previous study30, ACA exhibits active 
cytotoxic activity against PC-3 prostate cancer cells, with an 
IC50 value of 26.7 µM.  ACA also exhibits active cytotoxic 
activity in A549 and SK-LU-1 lung cancer cells, with IC50 
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Figure 6. Survival prediction 
of SRC, PIK3R3, PIK3CD, 
PIK3CB, and GNAI1.

values of 29.2 µM  and 25 µM, respectively. Similar research 
was also conducted on blood cancer cells (HL-60) which 
stated that ACA compounds have active cytotoxic activity 
with a IC50 value of 2 µM.31 Furthermore, a study32 found 
the IC50 value of various human cancer cells, including 
oral aquamous carcinoma (HSC-2), hepatocyte carcinoma 
(HepG2), and epidermoid cervical carcinoma (CaSKi) were 
5 µM, 18 µM, and 17 µM. Based on the literature review, 
ACA exhibits significant anticancer activity. Cytotoxic 
testing data, supported by bioinformatics and molecular 
docking assays, suggests the potential development of ACA 
as a chemotherapeutic treatment for osteosarcoma. 
	 In the bioinformatics analysis, 69 overlapping genes 
were identified as potential ACA targets in osteosarcoma. 
These genes are involved in critical biological processes, 
including the PI3K/AKT, SRC and GNAI1 which control 
cell viability, differentiation, and cell growth. The PI3K 
subunits (PIK3CD, PIK3CB, and PIK3R3) demonstrated 
significant roles in cell proliferation and survival, 
highlighting their importance as therapeutic targets. 
Activation of the PI3K/AKT/mTOR pathway involving 
these subunits enhances cell proliferation and tumor 
growth and contributing to chemoresistance. Inhibiting 
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Native 
Ligand

ACA Hydrogen
Non 

Hydrogen
Hydrogen 

Non 
Hydrogen

SRC 3D7T 5.62 123.85

Lys 271, 
Ser 273, 
Asp 276, 
Ala 270

Gly 272, 
Val 209, 
Ile 201 

Cys 498

Leu 516, 
Phe 515, 
Ala 367, 
Leu 512

PIK3CD 5T8F -10.99 -6.54

Asp 911, 
Val 828, 
Lys 779, 
Ser 831, 
phe 908, 
leu 784

Tyr 813, 
Ile 825, 
Met 900, 
Trp 760, 
Pro 758, 

Asp 911, 
Val 828, 
Ser 831,

Tyr 813, 
Met 900, 
Ile 825, 
Ile 910

PI3K 2RED -4.96 -3.27

Pro1486, 
Arg 1503,
Glu1506, 
Val 1499

-

Ser 1428, 
Lys 1504, 
Val 1429, 
Arg 1447

-

Protein  ID

ΔG Binding 
(kCal/mol)

Interaction of Amino Acid Residues

Native Ligand ACA

Table 3. Docking scores of ACA with native ligand.

these targets could therefore be a promising strategy for 
osteosarcoma treatment. SRC is a proto-oncogene encoding 
a non-receptor tyrosine kinase that promotes migration, 
growth cell, and survival by activating the PI3K/Akt and 
MAPK/ERK pathways. This highlights ACA's potential in 
modulating multiple oncogenic pathways. GNAI1 is also 
known to play important roles in several human biological 
functions. GNAI1 (guanine nucleotide-binding protein G) 
is one of the genes that codes for α-type heterotrimeric G 
proteins that may impact the growth and spread of cancer 
cells, and GNAI1 also regulates the activity of several cell 
surface receptors, which contributes to cellular signaling 
pathways.33

	 A lower binding affinity value indicates that the native 
ligand of PIK3CD has a stronger docking outcome than ACA 
molecule, according to molecular docking data. Binding 
affinity indicates a ligand’s ability to attach to a receptor.34 
Moreover, based on interactions between amino acid 
residues, the native ligan of PIK3CD has more interactions 
than ACA’s compounds. The receptor tyrosine kinase 
pathway plays a very important role in osteosarcoma.35 This 

Some amino acid residues colored red are similar to key amino acid residues.

pathway modulates many pathways such as MAPK, PI3K/
Akt, and JAK/STAT which contribute to cancer malignancy, 
metastasis, and angiogenesis.9 In osteosarcoma, PI3K/
Akt pathway regulates cell growth, differentiation, and 
survival.36 Based on the analysis, there are non-hydrogen 
(Tyr 813, Ile 825, Met 900) and hydrogen (Asp 911; Val 
828) residues that bind with ACA compound. According 
to reference, key amino acids in PIK3CD receptor (PDB 
ID: 5T8F) include Tyr813, Glu 472, dan Leu 474.29 This 
indicates that ACA compounds and native ligands PIK3CD 
bind to the same place and are expected to provide the same 
affinity in inhibiting the work of PIK3CD.
	 In drug discovery, good permeability and solubility are 
crucial. Based on solubility and permeability characteristics, 
Lipinski created a rule known as the Lipinski rule or rule of 
five (RO5) to expedite the drug discovery and development 
process.37 Lipinski's rule predicts a compound’s 
bioavailability, or ability to be absorbed and circulated in 
the body if administered orally. A compound is considered 
potential if it can be absorbed well and has high permeability 
(ability to penetrate cell membranes). Lipinski's rule 
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indicates that compounds with a molecular weight of more 
than 500 Da can cause inhibition of permeability in the 
digestive system and central nervous system. In addition, 
the lipophilicity of a compound is measured by LogP. 
LogP is the solubility value of a compound in octanol and 
water solvents, if a compound’s logP less than 5 it can pass 
through lipid bilayer-based cell membranes. The difficulty 
of breaking through the lipid bilayer barrier is indicated 
by the quantity of hydrogen donors and acceptors, this is 
because it has the potential to be partitioned in solvents 
with strong hydrogen bonds such as water.38,39 Drugs that 
are given orally (through the mouth) must be removed 
from the intestine through the intestinal wall to reach the 
bloodstream.40 Considering table 4, the ACA compound’s 
Lipinski test outcomes satisfy the requirements of Lipinski 
Rule, so it can be stated as a potential drug candidate for the 
development of oral drugs. 
	 Futher in vitro studies, such as proliferation, cell cycle, 
apoptosis, and western blot assay, are needed to support the 
development of ACA as a novel treatment candidate for 
osteosarcoma, as this research was limited to cytotoxicity 
testing, bioinformatics, and molecular docking.

Conclusion

1’Acetoxychavicol acetate (ACA) significantly supressed 
osteosarcoma cells. Through molecular docking and 

SRC PIK3CD PI3K

Molecular 
weight

312 312 312 234

Hydrogen 
donor

5 5 5 0

Hydrogen 
acceptor

6 6 6 4

LogP -0.05 -0.05 -0.05 2.40

Topological 
polar surface 
area (TPSA)

77.14 77.14 77.14 62.45

Druglikeness Yes Yes Yes Yes

Lipinski's 
Rule of Five

Native Ligand

ACA

Table 4. Lipinski’s Rule of Five data for ACA. cytotoxic activity, potential target genes of ACA in 
osteosarcoma mostly involve the PI3K pathway.   
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